Оставшаяся часть главы будет посвящена технологиям, используемым для выявления проблем производительности, вычленения медленного кода и его ускорения. Однако перед тем, как двигаться дальше, обратимся еще раз к спам-фильтру и посмотрим, чему же он нас научил. Самое главное — убедиться, что производительность имеет критическое значение. Во всех наших действиях не было бы никакого смысла, если бы спам-фильтр не являлся узким местом почтовой системы. Поскольку мы знали, что проблема заключается именно в нем, мы применили профилирование и другие технологии для изучения его поведения и выяснения главных недостатков. Далее мы убедились, что проблема сформулирована правильно и решать надо именно ее — глобально, а не концентрироваться на улучшении st rst r, на которую падало небезосновательное, однако же, неверное подозрение. Наконец, мы решили эту проблему, применив более удачный алгоритм, и, проверив, выяснили, что скорость действительно возросла. Поскольку она возросла в достаточной степени, мы остановились — зачем заниматься ненужными усовершенствованиями?